JACS |上交大张礼知&幺艳彩联合深圳大学杨波:单原子配位调控实现高效反向氢溢流与电催化脱氯

2025.11.15 154

 

▲ 第一作者: Qian Zheng, Hengyue Xu 

通讯作者:Yancai Yao Bo Yang Lizhi Zhang

通讯单位:上海交通大学 深圳大学


全文速览

本研究系统揭示了Rh单原子在氧化钛载体上的配位环境(Rh–O配位数从3到5)对反向氢溢出(RHS)过程的关键调控作用。四配位Rh₁O₄结构通过优化Rh的d带中心位置(–1.66 eV),实现近乎中性的氢吸附自由能(ΔG_H* = +0.08 eV),显著降低RHS能垒至+0.55 eV,从而在电化学脱氯反应中表现出卓越性能,4-氯酚降解速率常数高达4.65 h⁻¹,分别为五配位和三配位结构的4倍和29倍。

研究背景

反向氢溢出(RHS)是电化学氢化中的关键过程,涉及原子氢(H)从载体(如TiO₂)向金属活性位点的迁移。单原子催化剂(SACs)因其原子级分散和近100%的H利用效率而受到关注,但其配位环境与RHS活性之间的构效关系尚不明确。理解配位几何与电子结构(如d带中心、氧化态)对H*吸附与迁移的调控机制,是设计高效RHS电催化剂的关键。

本文要点

  • 通过DFT计算揭示Rh–O配位数对d带中心、Bader电荷和H*吸附能的调控规律。

  • 成功合成并表征了具有明确Rh–O配位(3, 4, 5)的Rh单原子催化剂(Rh₁O₃, Rh₁O₄, Rh₁O₅)。

  • 四配位Rh₁O₄在RHS过程中表现出最优的H*迁移动力学和最低的能垒。

  • 在4-氯酚(4-CP)电化学脱氯中,Rh₁O₄的降解速率常数为4.65 h⁻¹,法拉第效率最高,且具有良好的稳定性和pH适应性。

  • 通过H*淬灭、EPR和KIE实验证实RHS是4-CP降解的决速步骤。

图片解析

 

Figure 1. Schematic comparison of RHS to metal nanoparticle (a) and metal single-atom sites (b).
概念对比

示意图比较纳米颗粒与单原子催化剂中H*迁移路径,突出单原子RHS的原子级距离优势

 

Figure 2. Theoretical insights into Rh single-atom RHS. (a,b) Bader charge analysis of Rh sites, coordinating O sites as well as H* adsorbed on Rh sites and O sites in Rh1O3, Rh1O4, and Rh1O5. (c) Hydrogen adsorption Gibbs free energy of H* adsorbed on Rh sites and O sites of Rh1O3, Rh1O4, and Rh1O5. (d) Rh d-band center of Rh1O3, Rh1O4, and Rh1O5. (e) Schematic illustration of RHS to single-atom sites with different d-band centers. Ef = Fermi level, εd = d-band center of metal single atom, ΔGRHS = Hydrogen adsorption Gibbs free energy differences in the RHS procedure.
理论支撑

DFT计算结果:Bader电荷随配位数增加而升高(Rh₁O₃: +0.31 e⁻ → Rh₁O₅: +1.07 e⁻)

H吸附自由能(ΔG_H)显示Rh₁O₄最接近热中性(+0.08 eV)
d带中心下移(–1.43 eV → –1.78 eV),减弱H*吸附
RHS能垒最低为+0.55 eV(Rh₁O₄)

 

Figure 3. Regulated coordination environment of single-atom Rh catalysts. (a–f) The coordination environment model, HAADF-STEM image, 3D intensity profile, and line intensity profile of Rh1O3 (a–c), Rh1O4 (d–f), and Rh1O5 (g–i). (j) XANES spectra and (k) Fourier transform (FT) at the Rh K-edge of Rh1O3, Rh1O4, Rh1O5, Rh2O3, and Rh foil. (l) X-ray photoelectron spectroscopy pattern of Rh1O3, Rh1O4, and Rh1O5 in the Rh 3d region.
结构确认

HAADF-STEM图像确认Rh单原子分散

XAFS和XPS分析显示Rh氧化态随配位数增加而升高(Rh⁰ → Rh³⁺),EXAFS拟合确认配位数为3/4/5

 

Figure 4. Experimental evidences for RHS on Rh1Ox. (a) LSV curve of Rh1O3, Rh1O4, and Rh1O5 and Ti foam in a N2 atmosphere. (b) CV curves of Rh1O4 with different scan rates. (c) Hydrogen desorption kinetics plots of Rh1O3, Rh1O4, and Rh1O5. (d) Nyquist plots of Rh1O4. Inset: equivalent circuit for the EIS simulation. (e) EIS-derived Tafel slope of Rh1O3, Rh1O4, and Rh1O5 and Ti foam. (f) QH* plots of Rh1O3, Rh1O4, and Rh1O5 and titanium oxide substrate acquired from EIS simulation. (g–i) In situ Raman analysis of Rh1O4, Rh1O3, and Rh1O5.

 

动力学验证

LSV显示Rh₁O₄起始电位最正(–0.07 V vs RHE)

CV和EIS表明Rh₁O₄具有最快的H脱附动力学和最高的H吸附电荷(Q_H* = 7.95 μC)
原位Raman显示Rh₁O₄在最低电位(–0.1 V)下出现Rh–H键振动,表明其RHS动力学最优

 

Figure 5. 4-CP degradation performance and mechanism investigation. (a) Schematic illustration of H* generation, transfer, and 4-CP hydrogenation process. (b) 4-CP degradation on Rh1O3, Rh1O4, Rh1O5, and Ti foam. (c) Faradaic efficiency of 4-CP hydrogenation on Rh1O3, Rh1O4, and Rh1O5. (d) Stability experiment for 4-CP hydrogenation on Rh1O4 in 20 rounds of electrolysis. (e) 4-CP degradation on Rh1O3, Rh1O4, and Rh1O5 with 0.1 mol/L of TBA. (f) EPR spectra. (g) KIE plot of 4-CP degradation rate constant ratio (KIE = kH2O/kD2O). h. Schematic illustration of Rh–O coordination-derived differences in single-atom RHS capacity and 4-CP hydrogenation activity.

 

性能验证

4-CP降解性能:Rh₁O₄在45分钟内实现99%脱氯

H淬灭实验表明Rh₁O₄对H依赖性最强
EPR和KIE分析证实Rh₁O₄具有最高的H利用效率和最低的H迁移阻力

结论

Rh单原子的配位环境通过调控d带中心位置,直接影响H*吸附能与RHS能垒。四配位Rh₁O₄结构在电子结构与反应动力学上达到最优平衡,显著提升RHS效率与电化学脱氯性能。本研究为单原子电催化剂的配位工程提供了理论依据与设计原则。

意义和展望

本研究首次建立了Rh单原子配位数与RHS动力学之间的定量构效关系,为高效氢化催化剂的设计提供了新思路。未来可拓展至其他金属单原子体系(如Pt、Co)及更复杂的氢化反应(如CO₂还原、硝基化合物加氢),并探索在实际水体修复中的工程应用。

文献信息

Regulation of Rh Single-Atom Coordination for Enhanced Reverse Hydrogen Spillover and Efficient Electrochemical Dechlorination Journal of the American Chemical Society2025.

DOI: https://pubs.acs.org/doi/10.1021/jacs.5c18184

转自https://mp.weixin.qq.com/s/pXnm_FL5HA4yUPwbAyQJXA